Exact Minkowski Products of N Complex Disks

نویسندگان

  • Rida T. Farouki
  • Helmut Pottmann
چکیده

An exact parameterization for the boundary of the Minkowski product of N circular disks in the complex plane is derived. When N > 2, this boundary curve may be regarded as a generalization of the Cartesian oval that bounds the Minkowski product of two disks. The derivation is based on choosing a system of coordinated polar representations for the N operands, identifying sets of corresponding points with matched logarithmic Gauss map that may contribute to the Minkowski product boundary. By means of inversion in the operand circles, a geometrical characterization for their corresponding points is derived, in terms of intersections with the circles of a special coaxal system. The resulting parameterization is expressed as a product of N terms, each involving the radius of one disk, a single square root, and the sine and cosine of a common angular variable φ over a prescribed domain. As a special case, the N-th Minkowski power of a single disk is bounded by a higher trochoid. In certain applications, the availability of exact Minkowski products is a useful alternative to the naive bounding approximations that are customarily employed in “complex circular arithmetic.”

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Disk-Covering Problem with Application in Optical Interferometry

Given a disk O in the plane called the objective, we want to find n small disks P1, . . . , Pn called the pupils such that ⋃n i,j=1 Pi ⊖ Pj ⊇ O, where ⊖ denotes the Minkowski difference operator, while minimizing the number of pupils, the sum of the radii or the total area of the pupils. This problem is motivated by the construction of very large telescopes from several smaller ones by so-calle...

متن کامل

Minkowski Geometric Algebra of Complex Sets

A geometric algebra of point sets in the complex plane is proposed, based on two fundamental operations: Minkowski sums and products. Although the (vector) Minkowski sum is widely known, the Minkowski product of two-dimensional sets (induced by the multiplication rule for complex numbers) has not previously attracted much attention. Many interesting applications, interpretations, and connection...

متن کامل

THE ROPER-SUFFRIDGE EXTENSION OPERATORS ON THE CLASS OF STRONG AND ALMOST SPIRALLIKE MAPPINGS OF TYPE $beta$ AND ORDER $alpha$

Let$mathbb{C}^n$ be the space of $n$ complex variables. Let$Omega_{n,p_2,ldots,p_n}$ be a complete Reinhardt on$mathbb{C}^n$. The Minkowski functional on complete Reinhardt$Omega_{n,p_2,ldots,p_n}$ is denoted by $rho(z)$. The concept ofspirallike mapping of type $beta$ and order $alpha$ is defined.So, the concept of the strong and almost spirallike mappings o...

متن کامل

Computational Aspects of the Implementation of Disk Inversions

More than three decades the implementation of iterative methods for the simultaneous inclusion of polynomial zeros in circular complex interval arithmetic is carried out using the exact inversion of disks. Based on theoretical analysis and numerical examples, we show that the centered inversion gives smaller inclusion disks. This surprising result is the consequence of better convergence of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Reliable Computing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2002